
Assignment 3

Integer Multiplication and Division

Introduction

This assignment will introduce integer multiplication and division, which use special registers
named hi and lo. The assignment concludes with an application which involves integer
addition, subtraction, and multiplication.

Multiplication and Division

There are three multiply instructions: mul, mult, and multu. The mul instruction, just like
add and sub, has three arguments: two source registers and one destination register. This
instruction is appropriate when the programmer knows that the product will be no greater
than 32 bits.

The mult and multu instructions are slightly different. Because each of the two operands
may contain as many as 32 significant bits, the result may contain as many as 64 significant
bits. Thus, two 32-bit registers may be required to hold the result. There are two special
registers, named lo and hi, that are designed for this purpose. The register lo stores the
low 32 bits and the register hi stores the high 32 bits of the product. Thus, the mult and
multu instructions require only two arguments; the destination register is implied.

• Create a new file.

• Write the following instructions in the file.

– Load immediate 0xa into register $s0.

– Load immediate 0xc into register $s1.

– Use mul to multiply $s0 by $s1 and place the product in $s2.

• Save the program as mult.asm.

• Assemble and execute mult.asm.

1

• Check register $s2 to see whether it contains the correct value.

We will experiment with larger numbers. In the program mult.asm,

• Replace 0xa with 0xa00.

• Replace 0xc with 0xc00.

• Save the program.

• Assemble and execute mult.asm. (This is the last time that I will remind you to save
and assemble the program. That will always be understood.)

• Check register $s2 to see whether it contains the correct value.

Now we will switch to the mult instruction.

• Replace mul with mult and remove the destination register $s2.

• Execute the program.

• Check register lo to see whether it contains the correct value.

• Explain the result.

Note that the result 0x7800...0 was shifted four places, pushing the 78 into register hi.
Let’s make the numbers even bigger.

• Replace 0xa0000 with 0xa0000000.

• Replace 0xc0000 with 0xc0000000.

• Execute the program.

• Check registers lo and hi to see whether they contain the correct values.

• Explain the result.

What happened? The result is 0x1800000000000000, not 0x7800000000000000. Why?
Let’s make one more change.

• Replace mult with multu.

• Execute the program.

• Check registers lo and hi to see whether they contain the correct values.

• Explain why this result is different from the previous run.

2

Finally, we will consider division. As you might expect by now, MIPS has two division
instructions: div and divu. These instructions also put their results into registers lo and
hi. They place the integer quotient in hi and the integer remainder in lo. For example, if
we divided 200 by 7, we would get a quotient of 28 and a remainder of 4. Thus, we would
find 28 in register hi and 4 in register lo.

• Create a new file.

• Write the following instructions in the file.

– Load immediate 200 into register $s0.

– Load immediate 7 into register $s1.

– Use div to divide $s0 by $s1.

• Execute div.asm.

• Check registers lo and hi to see whether they contain the correct values.

Application

Write a MIPS program named poly.asm that will evaluate the polynomial

p(x) = x3 − 6x2 + 11x− 5

for any given integer x. Your program should read the input (the value of x) through a
dialog box with the prompt "Enter a value of x: " and it should display the output (the
value of p(x)) through a dialog box with the message "The value of p(x) is ".

Use plenty of documentation. In particular, write an inline comment on each line of
code, briefly describing the purpose of that instruction. Use major comments to break your
program up into logical sections. Place a block comment at the beginning of the file, which
includes the program name, your name, the date, and the purpose of the program. You may
copy, paste, and edit one of my block comments.

Your program should run as efficient as you can make it. Then be sure to test your
program thoroughly. When you are satisfied with it, drop it in your dropbox in the Coms

361 folder on the hams-acad-fs server.

Due Date

Place the application program poly.asm in a folder named Assgn 3 and drop it in the
dropbox. It is due by midnight, Wednesday, September 11.

3

